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Phenomenology
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] What is a cathodic (vacuum) arc?

O Arc discharge:

o Electrical discharge through a plasma, characterized by
Relatively high current (typically > 5 A)
Relatively low voltage (typically <50 V)
collective electron emission mechanism at the cathode

O “Vacuum” arc discharge:
o Arc discharge whose plasma is produced at electrodes

O Cathodic (vacuum) arc discharge:

o Vacuum arc discharge whose plasma is produced at
cathode spots
0O Anodic (vacuum) arc discharge:

o Vacuum arc discharge whose plasma is produced from
evaporating anode material
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Arc Discharge
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] Electron Emission Mechanisms

Physics problem:
O Electron transfer over the cathode’s potential barrier
Nature’s solution:

0O “collective” electron emission mechanisms:
0o Thermionic emission

Field emission arc discharge

O
o Thermo-field emission
o Explosive emission (this includes cathode plasma)

O As opposed to “individual” e-emission mechanismes:

o Secondary electron emission by primary particle impact:
- lon
. Electron glow discharge
o Excited / energetic atom
- Photon

André Anders, Plasma Applications Group
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ﬂ Thermofield Electron Emission
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O Current density of thermofield emission is necessarily associated
with great power density = plasma formation can become
explosive in nanosecond time scale
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* not sputtering
* not evaporation
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photo courtesy of B. Juttner

Spot Ignition on Surface
with Non-metallic Layer: Type 1
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photo courtesy of B. Juttner

Spot Ignition on Clean
Metal Surface: Type 2




] Cathode Erosion and Plasma Formatlon
g BE - PR i

Corresponds to metal mode
w8

o The Experimental Basis:

BERKELEY LAB

O arc spots / spot
fragments leave
crater traces

O type or mode
depends on
surface conditionf

- "-#' '''''''''''''

from A. E. Guile, B. Jittner,
ZIE Preprint 80-2, Berlin, 1980

André Anders, Plasma Applications Group



Cohesive Energy Rule
0 35
Energy balance ' -
consideration: 8|
N S
There is a direct E ol P
correlation g ¢ £
between cohesive &, | >
energy of the w” E
cathode solid and - =
burning voltage of o -
cathodic arc ]
ol T
0 20 40 60 80

Atomic Number

cohesive energy = energy needed to free an atom from the solid

T ———— A Anders et al, J. Appl. Phys. 89 (2001) 7764
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] Properties of Cathodic Arc Plasmas

0O Plasma expands from near solid state density (102 m-3) in the
cathode spot to very rarified plasma far from spot (e.g. down to

10% m3);

O for “large” distances from spot: plasma is in non-equilibrium

O Jiittner’s formula: In absence of magnetic field and for
r>100 um n~yl, [r

O For copper cathode:  » ~ 10" A™m™

O electron temperature near spot 2-4 eV
O Average ion velocity v, ~0.8-22x10"m/s
O Electron current > arc current (this is not a typo!)

I 2 ALY LAS I
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/:\I ﬂ “Noise” or Fluctuations
O Noise due to the j‘ o +1 e +3\ Ag
) o +2 X +4
explosive nature of o0l . 5
plasma production - i oo
. . . I oo 0D g g D|:| 59 ob
O Noise Is present In o (o 7| m S0 0f
practically all parameters 6055255 oo

(voltage, density,
temperature...) 40!

O Noise is of little or no
concern for plasma
deposition (averaging
effect)

O Example: CSD sampling
of pulsed silver arc

O .. Avo,“”.,u,‘. A_,AAA,~ X 50
arc number

T ——— p© Anders, |EEE Trans. Plasma Sci. 27 (1999) 1060
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Ion Charge-State Spectrometry
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Example of TOF Raw Data

O Yttrium plasma, with ion charge states 1+, 2+, and 3+
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O lon charge state distributions (CSDs) of over 50
elements and alloys have been measured:
o Mean ion charge state typically > 1; CSD is noisy
Brown, Rev. Sci. Instrum. 65 (1994) 3091

o CSD iIs enhanced at beginning of each arc discharge and
reaches steady-state after about 100-200 ps

o CSD can be enhanced by
M_agnetlc field _ Oks et al. IEEE Trans. Plasma
High current (self field) Sci. 24 (1996) 1174
Current spikes

o CSD can be reduced by background gas

o Model of Local Saha Equilibrium includes charge state

freezing A. Anders, Phys. Rev. E 55 (1997) 969

BERNELEY LASD I

Ion Charge State Distributions
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Secondary Relations

Follow From Cohesive Energy Rule

A consequence of the energy balance
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] Erosion Rate and Cohesive Energy
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Cohesive Energy Rule
Applied to Kinetic lon Energy
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o Time-of-Flight Measurement Setup
with Current-Zero
140
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120+ arc current arc switch off
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ﬂ TOF Results

e most distributions show one
large peak

e indication that all charge
states have about the same
velocity 1.e. Kinetic energy Is
Independent of charge state

* high energy peaks are
uncertain and may be related to
plasma instabilities

Byon and Anders,
J. Appl. Phys. 93 (2003) 1899-1906
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Kinetic Ion Energy
With Background Gas
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O Presence of gas causes changes in
o plasma production
o plasma transport

O changing surface condition of cathode, similar to
“poisoning” of sputter target, issue of spot type

O Collisions with gas will shift ion energy
distribution function to lower energy

O low-energy peak will appear, representing species
that have lost energy in collision

- Eldl .M. gy O]
André Anders, Plasma Applications Group



Effect of Gas on ~l 1o | p in mbar
Kinetic Energy of 7| % \ 1x10
Metal Ions oo

O Example: Ti plasma in
nitrogen

O method: mass selective
energy analyzer

intensity (counts)

Bilek et al., J. Appl. Phys. 83 (1998) 2965 energy (eV)






Model of “Instantaneous Freezing”

O Charge state spectrum reflects plasma condition at
equilibrium = non-equilibrium transition zone,

the “freezing zone” near cathode spot

expanding,
non-equilibrium
plasma freezing

Z0ne

//////////////////////////////

cathode spot

- Anders et al., J. Phys. D: Appl. Phys. 21 (1988) 213-215
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Local thermal run-away process leads to micro-
explosion and formation of extremely dense plasma:

1 Arc Spot Ignition

High electric field, enhanced by
1. protrusion (e.g. roughness, previous arcing)
2. charged dielectrics (e.g. dust particles, flakes)

1. higher field leads to locally greater e-emission

J yd o _feedback!
2. Joule heat enhances temperature of emission site
3. higher temperature amplifies e-emission non-linearly

Runaway!

BERNELEY LASD I
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and Arc Spot Ignition

“Frozen” nonlinear wave of liquid metal in strong electric field

¥

W Explosive Emission

' Gabovich and Poritskii, JETF Lett. 33 (1981) 304



Macroparticle Formation: Response of
a Liquid to Impulse Pressure
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WX\ ELECTRON

Self-Generation of | EMISSION
Ignition Conditions W/%WW

ION PRESSURE

RSN

) ns discharge on Mo. Photo courtesy of B. Juttner
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Extinction of
emission center
causes voltage to
rise until new
center Is ignited

Voltage (50 V/div)

Puchkarev and Murzakayev,
J. Phys. D 23 (1990) 26 Time (50 ns/div)
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Spot motion: Displacement of active spot by ignition of new spot
and extinction of active spot

for homogenous (uniform) surfaces: ignition probability follows
laws of “diffusion-limited aggregation” resulting in “random
walk”

for non-uniform surfaces: ignition probability is higher at
locations where local electric field is enhanced, especially by
dielectric layers, charges, inclusions: ignition probabilities
follows laws of “self-avoiding walk,” i.e. does not ignite where
Ignition has happened before (conditioning effect!)

If symmetry is broken by magnetic field: ignition probability is
higher at locations where local electric field is enhanced via
thinner sheath (higher density under plasma jets): “steered walk

] Ignition and Types of Spot Motion

I 2 ALY LAS I
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" Effects of Layers and Magnetic
Field on Spot Ignition

O Both surface layers and magnetic field change
probability distribution for spot ignition

}

O these effects can be described in a single,
generalized model: the fractal model .

- Eldl .M. gy O]
André Anders, Plasma Applications Group
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KFractals
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The Classic Question:
How long is the coast of Britain?

=0 Austz-alian coast

—C
\O
104 — \O

\O-_

South African coast

O emv—— () o

and frOnt'
1
-O“o er Of Portugal

\K

O, .

Measured coastal length (km)
S
§:
|

The answer depends on the length scale of measurement!

T T I I [ |

10 102 103
Length of the measuring scale (km)

eseseeeeessss B. Mandelbrot, The Fractal Geometry of Nature (1983)
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. New Question: What is the current
] density of cathode spots?

10”4 m light |
® craters
10* other o°
a |
o |
g 1011 °
> 10" . fractal
=
s 10° n o
c
o 10° E =
-]
© 10] =
10°

| ! | ! | ! | ! | ! | ! | !
1940 1950 1960 1970 1980 1990 2000 2010
Year of Report

. BRl4l M. g™y
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Self-Similarity

O Anobject (“fractal’) is self-similar (invariant with
scaling) if it is reproduced by magnifying some
portion of It.

O Self-similarity may be discrete or continuous,
deterministic or probabilistic.

O Self-similarity can be mathematically exact or only
approximate and asymptotical.

M. Schroeder, Fractals, Chaos, Power Laws, Freeman, New
York, 2000

BERNELEY LAR I
André Anders, Plasma Applications Group
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w Fractals and Power Laws

Power laws are an abundant source of self-similarity.
The homogenous power law
f(x) =cx”
IS self-similar because rescaling (multiplication with a
constant) preserves that Is proportional.

A fruitful approach to fractal modeling Is to look for
power laws describing the physical phenomena.

M. Schroeder, Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise
(W.H.Freeman and Company, New York, 2000).



e Example of
- . Mathematically Exact Self-Similarity

Mandelbrot-
”Lightning”
and

Mandelbrot
Trees

André Anders, Plasma Applications Group



Example of

[l Mathematically Exact Self-Similarity

courtesy of Jim Tucek
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Arcing on a SS
shield coated
with WO,
(colors due to
Interference)

Traces are

probabilistic

fractal
dimension ~ 1.7

André Anders, Plasma Applications Grou

Arc Traces — Low Magnification
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O The fractal approach to “Diffusion-limited Aggregation” is
applicable to random walk model of spot motion; ignition of a new
spot corresponds to attachment of a molecule to nucleation site

Fractal Model and Ignition
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] Ignition concept in Earlier History

O M.J. Druyvesteyn (1934): “It may be that the
breakdown of the insulator [layer] causes the

wandering of the cathode spot of an arc in some
cases.”

0 J.D. Cobine (1938): “The discharge is influenced
markedly by the condition of the copper
cathode...this random variation [of the re-ignition
voltage] is quite probably due to the variation in
the in impurities at the cathode which influences
the mechanism of arc re-ignition...

BERNELEY Lam

André Anders, Plasma Applications Group
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Streak camera pictures at different time resolution
(courtesy of B. Juttner)

Temporal and Spatial Self-Similarity

20 ps 800 ns

I B R EY LA I
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Simulation of Spot Light Emission

FWHM 10 um, step=FWHM FWHM 15 um, step=FWHM/2

Py —————— Anders, et al., J. Phys. D: 25 (1992) 1591
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Random Motion:
] Probabilistic Fractal

v,
)q\

=
‘;'?*,_

D=1.1111 D=1.4285

e B, Mandelbrot, The Fractal Geometry of Nature (1983)
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] Fractal Dimension of Spot Motion

Transition from Random Motion to Steered Motion can be
assoclated with a reduction of the fractal dimension

Hausdorff Dimension

1
0 Magnetic Field

I 2 ALY LAS I
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] Fractal Sheath with “Holes”

*sheath thickness scales scales with 1/ \/;
*no sheath but voltage drop in nonideal plasma of (exploding)
emission centers: “holes” in sheath — no flux to cathode

holes In sheath

SNV AN

cathode sheath

NS

exploding emission centers

I R e Y LA
André Anders, Plasma Applications Group




A locally enhanced plasma edge

plasma density
causes higher field | B
strength, enhancing |

Ignition probability !

s :,}: e 2 “ _../ plasma jets

hcbin IR P & Retrograde Motion
| 100 pm

Juttner and Kleberg, J Phys. D: Appl. Phys. 33 (2000) 2025
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Noise — What Can We Learn?

O Not all noise is equal!
O “Colored” noise (=0 white, =1 pink, =2 brown, and p>2 black)

= g - an -l 2y o phc] W il
el E i MO LR ZA o i

-
~ James A. DeYoung,

" - http://tycho.usno.navy.mil/

André Anders, Plasma Applications Group
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Typical “Noise” of Plasma Parameters

intensity (rel.units |
|

0 200 &00 600 800
t {ns)

Anders, et al., J. Phys. D 25 (1992) 1591
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O In the limit of small current: one visible spot
O 1//2 (power) noise of light & ion current for /< 10 MHz
O one needs to use log-log presentation to see physics

] Fourier Transform Analysis

m/divy

5-dB

Amplitude

litude

np

Am

messss————— Smeets and Schulpen, J. Phys. D 21 (1988) 301c

André Anders, Plasma Applications Group
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Fractal Macroparticle Distribution
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—— A. Anders, IEEE Trans. Plasma Sci. 33, no.5 (2005).
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] Fractal Voltage

W Amplitude ~ 1/f
T Spectral power ~ 1/f? = brown noise

=
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Frequency, (Hz)
I ————— A. Anders,et al., Appl. Phys. Lett. 86, 211503 (2005).
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] “Ecton Cutoft” of Fractal Model

10-9 ' L L | ! T 1T T rrrr] T T T T T TT]

|

NN,

PW ' lw | ’MWMMW\NWWG

———

Current Spectral Density, (A2/Hz)

10-17 — — L
10° 107 108 10°
Frequency, (Hz)
— Anders and OKks, in preparation (2005).
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Conclusions from Fractal Concept

O Cathodic arc has many self-similar features in time
and space: fractal model is not only appropriate but

a means a consolidating conflicting theoretical
approaches

O Numerous power laws; giving linear slope when
using log-log presentation; slope ,may be interpreted
as a fractal dimension for the phenomenon

O For many of the noisy parameters, the spectral
density is ~ 1/, indicating “brown noise”

O Current noise shows ‘ecton peaks’ — cutoff for a
physical fractal model.

BERNELEY LASD I
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History

I B R EY LA I
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1766 - Joseph Priestley

O First cathodic arc coating (in
air)
O discharge of a bank of

Leyden jars through a brass
chain

O arcs between each link of the
chain

O deposit on glass is well
adherent

O observed Newton’s rings
(oxide films)

O found black coating (copper
oxide)

J. Priestley, The History and Present State of Electricity, London 1766
(on arc history) A. Anders, IEEE Trans. Plasma Sci. 31, 1052 (2003)



Plate I,

1766 - Joseph Priestley

e ——..—.—.—..-—.-.-.—‘ . Hﬂ}lfr.ﬁ‘fnfﬂrr!ﬁ( e
FErEeee |/|1 | y .
;

75‘9 8.

L&

Cathodic arc deposition

J. Priestley, The History and
Present State of Electricity,
London 1766

(on arc history) A. Anders, IEEE
Trans. Plasma Sci. 31, 1052 (2003)

I T Myreds fo
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O First short arcs
In air that were

1802...1821 - Humphry Davy

|
electrochemical 1:
battery (1802) <

O Continuous arcs
In air and In
low-pressure
vessels (1809)

O Arc
demonstrations
(18097-1821)

-
%

i s meme (0N arc history) A. Anders, IEEE Trans. Plasma Sci. 31, 1052 (2003)
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1802/03 FTAABDBAHH - BOABTOBCKHXD

W N3BBCTIE

Vasilii Petrov OMBITAXE,
First continuous arcs in air KOmopie npou3soaub
and at IOW pressure USing an Ipogpeccopd QPusuxu Bacuaiii Memposd,

“enormous battery” of 4200

Copper-ZInC plates mepeu , cocmosaswen unozga usb 4200
pUinShed Only In RUSSian, mbausixb u yuukossixb kpyxxosb, u Ha-
his work was unknown or XpaRuetcs upx ‘Cakas - emepoypreson
ignored

nocpejcmpoMb orpomuoi maunaye 6anr-

Meguxo - Xupypruyeckoit Akajemin.

Bb CAHKT-IETEPEB[PIE,

Bb Tunorpagin Tocyjapcmseunoii Me-
Aununckoi Koaxerin, 1803 roaa.

it s pieme e ome. (01 arc history) A. Anders, IEEE Trans. Plasma Sci. 31, 1052 (2003)
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1877 - Arthur W. Wright

O Possibly a report on cathodic arc plasma
deposition but more likely on pulsed sputtering:
o Inductive energy storage for pulsed arc

o humerous cathode elements: Pt, Au, Co, Bi, Pd, Pb, Al,
Sn, Mg, Zn, Cd, N1, Co, Te, Fe

o describes the different stability of films in atmosphere

(unfortunately, no figure in paper)

A.W. Wright, American J. Sci. - Third Series, vol. XIII, no. 78 (1877) 49

R.L. Boxman, IEEE Trans. Plasma Sci. 29 (2001) 759-761

I R EEL.TY AR I
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1877 - Arthur W. Wright

|
£
A

iuill;'_ nl i

it
i




ey 1888-1892:
Edison’s phonogram patent

. UNITED STATES PATENT OFFICE.
*Kirst patent

application granted
for arc plasma
deposition

°llm1ted tO SPECIFICATION forming part of Letters Patent No. 484,582, dated October 18, 1892,

Original application filed January 5, 1888, Serial No, 359,896, Divided and this applioation flled January 30, 1888, Renewed
March 30, 1892, Berlal No. 427,011, (No specimens.)

THOMAS A. EDISON, OF LLEWELLYN PARK, NEW JERSEY, ASSIGNOR TO
THE EDISON PHONOGRAPH COMPANY, OF NEW JERSEY.

PROCESS OF DUPLICATING PHONOGRAMS.

continuous arc that
To all whom it may concern: covered by a more rapid process to give

i i Be it known that I, THOMAS A. EDISON, of | strength and body to the covering. A fur-
(lronlcally) turned Llewellyn Park, in tl’le county of Essex a’.ncl ther covering of metal may be produced by

State of New Jersey, have invented a certain | electroplating a metal upon the vacuous de- -

Out t() be nOt usefu1 5 new and useful Process for Duplicating Pho- | posit in the usual manner of electroplating, 55
nograms, (Case No. 751,) of which the follow- | or the vacuous deposit may be backed up by"

for coating of

original wax Inventor
phonograms ‘:i«m A &eﬁ._,,_..,,

d . i!
| &‘" @
André Anders, Plasma Applications Group
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] 1939 - Burkhardt and Reinecke

—
& w0y 6 0 Consumable
[ 45 | electrodes deposited
s\ #9 | —F \ film onto biased or

André Anders, Plasma Applications Group

unbiased substrates.

W. Burkhardt and R. Reinecke,
US 2,157,478. Method of coating
articles by vaporized coating materials.
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O Arc deposition process and apparatus.
O Cathodic arc source incorporated into a single devise.
O Insulator arc travel confinement.
O Line-of-sight process.

0 Discrete anode (not chamber).

1971 - Snaper

A.A. Snaper, (1974).
US 3,625,848: Arc deposition
process and apparatus.

TN R L L N s LSS
SP4RK 2 23 1B X Y ;}r/&

SULPFLY ; Y ]

S —T— 2 S\ R

) { e "'/5 \i :\\-

/ 6 s 2 5 \ 4

DC.CURRENT E y ::

SULPLLY N\ J L;

— /7 A SRS \?\_\‘\_‘1 \ |

André Al
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] Soviet Union in 1970s

O State-run development of eventually 10,000 arc source

“Bulat” cathodic arc source
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1978, 1985 - Axenov et al.

O First major use of magnetic field control of coating particles
leading the way to curvilinear devices for macroparticle control.

O Arc confinement on cathode face with magnetic fields.

O Chamber as anode.
O Line-of-sight process, and also non-line-of-sight processes.
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Arc Plasma Sources
&
Macroparticle

Filters



DC Arc Source : Steered Arc

movie
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F\ﬂ Batch versus Linear Processing

O Batch Systems
o low to moderate production volume
o lower cost to manufacture

o good cycle to cycle inspection and maintenance of
sources and inner chamber components (liners)

O greater operator interface handling substrates

PVD-4865

Ion Bond Hauser Vergason
BEREELEY Lam

André Anders, Plasma Applications Group



Computer control &
power supplies

Turbo pumps

Photo courtesy of
Joerg Vetter, Metaplas
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10 ns, Mo, Figure courtesy of B. Juttner






Defect Formation by
Incorporation of Macroparticles

Macroparticle
may or may not

. - ¥ stay in the film
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Photo courtesy of B. Wood, Los Alamos, NM 1 Lim
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O Macroparticle generation does not depend on arc current:
104

Macroparticle Distribution

f(mm? AL pm™)

0.1 1 10
d (um)

ottty T mm— Anders, |IEEE Trans. Plasma Sci. 21 (1993) 440

André Anders, Plasma Applications Group



reeee) ] Macroparticle Distribution
5

O Materials of 10
lower melting 10* | ——W
point have larger 10° | @\x B
macroparticles - ) +Xé

FI| 2 L R —&—

O Lower end of E 10 \\\‘S\ ——Pb
distribution is w 10! \\m
determined by  “¢ 100 | ™ \\\
instrumentation < \\\\j

107 |
a2 N
_ N
0.1 1 10 100

d (um)

T ——nnders, IEEE Trans. Plasma Sci. 21 (1993) 440
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not

unce” from surfaces

O Mac

rticles may (o

o walls or reflect

re when hitting a

Example: Carbon macroparticle reflection and fracture
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' *"! n from a liquid (!) surface in vacuum

A. Anders, Appl. Phys. Lett. 73 (1998) 3199



Macroparticle Removal
by Magnetic Filtering

Ffrreeee
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ELECTRONS
o Electrons are guided by magnetic field: they gyrate
around and along field lines v, my,
r =S =
o Electron gyration radius “ o, eB

o Electron motion perpendicular to field lines is facilitated
by collisions; displacement is about one gyration radius

IONS

o Ions cannot be separated from electrons due to electric
fields (plasma is quasi-neutral)

0 Ions are guided by electric potential minimum along
magnetic field lines

Transport of plasma in filters is a combined magnetic and electric
mechanism
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Classic 90° Duct
= X
dd—d—o N
DC arc AT
90°-duct %’
source

filter M

= B

I.Aksenov et al., Sov. J. Plasma Phys. 4 filtered plasma+
(1978) 425-428

- Eldl .M. gy O]
André Anders, Plasma Applications Group
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] Out-of-plane, Double-bent Filter

O Out-of-plane filter from Nanyang
Technical University '

O closed
O commercial version
O Shimadzu DLC-MR3CA

André Anders, Plasma Applications Group



Open 90° Filter

O Open filter: e.g.
freestanding 90°
filter:

Openings allow
macroparticles to
leave the filter
volume

High current
required (e.g. arc
current in series)

review on filters: A. Anders, Surf. Coat. Technol. 120-121 (1999) 319



Open S-Filter

Anders, IEEE Trans.
Plasma Sci. 30 (2002) 108







Energetic
Condensation



ey Bias-(Energy!)-dependent
— ] Condensation

A. Anders, Appl. Phys. Lett., 85 (2004) 6137
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Bias-(Energy!)-dependent

Result: at even
moderate bias,
film formation is
reduced by self-
sputtering

Extreme
examples: Au, Zr

Condensation

0.7 - [ i .
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0.6 &

P
® ]
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E 0.4 - ) .
2 (.3- . l
3 0. § i : iL _
0.1- _
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0 20 40 60 80 100

Negative bias voltage (V)

E—— A Anders, Appl. Phys. Lett., 85 (2004) 6137

André Anders, Plasma Applications Group
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Self-Sputtering

T T | . [ . ;

0.7 )
" MD simulations

S 100 eV N

0.5- ]

0.4 -

Self-Sputter Yield
©
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0-2 i /. \0 E:V ~1\\ v

0.1 - \ i
p 25 eV |

00 = "'“""‘_"‘--- \1 1
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Angle of Incidence

T I Hanson et al., J. Vac. Sci. Technol. A 19 (2001) 820-825.
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Sticking Probability

1.0+ v i, ; ' ' : -]
\. e
0.8-
2
S 0.6-
3
o
o
2 0.4-
S
n
0.24 | MD simulations
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T I Hanson et al., J. Vac. Sci. Technol. A 19 (2001) 820-825.



= Energetic Relation Between

BERKELEY LAB

] Implantation and Deposition Processes

Implantation
P duty cycle of bias

Film growth is still possible for low

sputter yield = 1 for £,=300-1200 eV

lon plating, MePIIID

lon Energy

Subplantation : =
cathodic arc deposition

sputterin
Deposition P J

evaporation

> 100 eV
~10-100 eV

~1-10 eV

~0.1 eV

I 2R AL Y LA I

André Anders, Plasma Applications Group



= Plasma Deposition: Surface Processes
] Affected by Energy of Incoming Ions

BERKELEY LAB

O Sticking / reflection

O Sputtering

O Secondary electron emission
O Subplantation / implantation
O Surface diffusion

O Defect generation

O Phase changes, including precipitation
O heating

O adsorption/desorption of gas

O reaction with background gas atoms

EMITTED PARTICLES

I 2 ALY LAS I

André Anders, Plasma Applications Group
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;\I Structure Zone Diagram
for Sputtered Films

0.5 SyUBSTRATE

0.4
ARGON TEMPERATURE (T/T )

PRESSURE
{mTorr}

] Structure-zone diagram showing schematic microstructures of films
deposited by cylindrical magnetron sputtering as a function of growth temperature
and Ar pressure.

T ——Thornton, J.Vac. Sci. Technol. 11 (1974) 666



o Example for non-energetic condensation:
] “Long-through-sputtering”

4 '
i
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L0k 20 Z200x i b

Photo courtesy of Peter Siemroth
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O Trench filling using MePHID with filtered copper arc plasma

ﬂ Diffusion Barriers and Trench Filling

voids form if vapor | plasma does perfect filling of trenches, only
not have correctimpact angleand  possible by effects of limited

energy sticking and self-sputtering

under energetic conditions!

André Anders, Plasta Applications Group O.R. Monteiro, J. Vac. Sci. Technol. B 17 (1999) 1094
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Excessive Compressive Stress

Cathodic arc {li

film on glass A
Sl




T Improvement of Film | =
Frreeee '11 AdheSiOIl by Bias bR o

Effect of ion energy on the
adhesion of Ag/YBa,Cu;0,
film on Si produced by
MePIIID.

due to
1. sputter removal of
contaminants
lon mixing
3. stress relieve

1

Beautiful MD simulations by Australian group,
see, e.g., M. Bilek, et al., IEEE Trans. Plasma
Sci. 31 (2003) 939

N

Anders, J. Vac. Sci. Technol. B 12 (1994) 815-820




;\I Buildup and Control of
f\ﬂ Intrinsic Stress in ta-C Films

Filtered pulsed cathodic arc
and pulsed bias

arc pulse master gated
power |e«—— pulse —»= pulse
supply generator generator

17, macroparticle
~ filter

plasma source Y
high voltage
substrate pulse generator
arc arc
plasma plasma
pulse pulse
(b) T H H H H H H T
substrate substrate
bias pulses bias pulses

André Anders, Plasma Applications Group

Stress (MPa)

Pulsed bias voltage is used to
change carbon energy and thereby
bonding and stress in film
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ta-C Multilayer
made by Carbon- 200 nm
PIIID

Anders, Surf. Coat. Technol. 94/95 (1997) 189
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In-situ Monitoring of Stress for Stress Control
by Thermal Spikes During Film Growth

Deflection of a laser beam

d ..

I B R EY LA I

André Anders, Plasma Applications Group



Stress Relaxation by Ion Bombardment

12000
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Thickness (nm)

M. P. Delplancke-Ogletree and O. R. Monteiro, Diamond Rel. Mat. 12 (2003) 2119
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O Cathodic arc discharge iIs characterized by explosive
electron emission, coupled to production of cathode
plasma

O Cathode plasma properties follow Cohesive Energy Rule

O Cathode processes are stochastic and self-organized,
fractal model is most appropriate; fractal properties are
found both in temporal and spatial properties

O Perhaps the oldest plasma technology, yet “emerging
technology” with disadvantages and advantages
o Macroparticles — which are addressed by filtering

o high degree of ionization and energetic condensation to form
dense films and nanostructures

BERNELEY LASD I

] Conclusions

André Anders, Plasma Applications Group



In preparation:

Cathodic arc plasma deposition:
From fractal spots to energetic condensation

Springer, New York 2006

. BRl4l M. g™y
André Anders, Plasma Applications Group
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